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Abstract. We study the electronic structure of the binary alloy and (quantum) percolation model. Our
study is based on a self-consistent scheme for the distribution of local Green functions. We obtain detailed
results for the density of states, from which the phase diagram of the binary alloy model is constructed,
and discuss the existence of a quantum percolation threshold.

PACS. 71.23.An Theories and models; localized states – 72.80.Ng Disordered solids

1 Introduction

Many solids, like alloys or doped semiconductors, form
crystals consisting of two or more chemical species. In
contrast to amorphous solids they possess, at least ap-
proximately, a regular lattice whose sites are randomly oc-
cupied by the different components. Understanding their
electronic structure is an important task which we will
address here through an approach that allows for a com-
prehensive description of such substitutionally disordered
systems. This approach, which we call the local distribu-
tion (LD) approach, considers the local density of states
(LDOS) ρi(ω), which is a quantity of primary importance
in systems with prominent local interactions or scattering,
e.g. in the formation of local magnetic moments. What
makes the LD approach ‘non-standard’ is that it directly
deals with the distribution of the LDOS in the spirit that
Anderson introduced in his pioneering work [1]. While the
LDOS is directly related to the amplitude of the electron’s
wave-functions on a certain lattice site, its distribution
captures the fluctuations of the wave-functions through
the system.

The LD approach has been originally developed for a
description of Anderson localization [2], and furthermore
been applied to systems with topological disorder [3,4]. In
this article we like to demonstrate that it can also describe
systems with a bimodal disorder distribution, as the bi-
nary alloy model. It has been noted several times (see e.g.
Refs. [5–7]), that the physics of this model is only par-
tially covered in a mean field description as provided by
the coherent potential approximation (CPA). Instead one
has to account for the specific configuration of atoms in
the vicinity of a lattice site [8,9]. To give a better descrip-
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tion, a variety of (cluster) extensions to CPA has been de-
vised, which explicitly treat correlations on finite clusters
(see e.g. [6] or [10]). We will show that the LD approach
can serve as a conclusive extension of CPA — indeed it
contains the CPA as a limit, see Appendix A — which
implicitly contains these correlations.

Besides giving very precise results for non-interacting
systems, an appealing feature of the LD approach is its
possible application to interacting disordered systems. Re-
cently some progress in this direction has been made us-
ing the LD approach in combination with dynamical mean
field theory [11]. We could e.g. show that polaron forma-
tion in an electron-phonon-coupled system is enhanced in
the presence of impurities, leading to polaron like defect
states [12]. The Mott transition in a binary alloy is another
example, where the LD approach might help to substan-
tiate present results [13].

The outline of this article is as follows: We will shortly
introduce the binary alloy model and the associated distri-
butions, and then apply the LD approach. As a limiting
case we will consider the (quantum) percolation model,
and finally conclude. The two appendices contain the
derivation of the LD approach and its application to the
Anderson localization problem.

2 Model and distributions

The simplest model for an electron moving in a crystal
with substitutional disorder is given by the Hamiltonian

H =
∑

i

εic
†
i ci − t

∑

〈i,j〉
c†i cj , (1)

where t denotes the tight-binding hopping integral be-
tween nearest neighbour sites on a given lattice, and the
εi’s are random on-site potentials.
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The model is further specified through the probabil-
ity distribution of the random variables εi. We only con-
sider models where the εi are identically independently
distributed random variables with a fixed distribution
p(εi). The Anderson model of localization, the binary alloy
model and the quantum percolation model are examples.

For given values of the εi, i.e. for a specific disorder
configuration (‘one specimen’), the local density of states
(LDOS)

ρi(ω) = −Im Gii(ω)/π (2)

expressed through the retarded Green function Gii(ω), has
a definite value on each lattice site i. For the ordered sys-
tem, translational symmetry implies that ρi(ω) has the
same value for every i. In a disordered system, ρi(ω) varies
with i, so it has different values with a certain probability.
The corresponding probability distribution p(ρi, ω) cap-
tures the fluctuation of the LDOS through the system. It
is reasonable to assume that for an infinite system p(ρi, ω)
does not depend on the explicit values of the εi, but only
on the probability distribution p(εi). We thus assume that
the distribution p(ρi, ω) is, in a slight ‘abuse of language’,
self-averaging: It does not depend on the specific disorder
configuration looked at, but takes on a definite value in
the thermodynamic limit. Moreover p(ρi, ω) has a second
meaning. If we look at a fixed lattice site i but consider all
possible values of the εi, the LDOS is a random variable
in its own right, whose probability distribution is equal to
p(ρi, ω) as defined above. So p(ρi, ω) gives (i) the proba-
bility that the LDOS has a certain value on some lattice
site, when all εi are fixed, and (ii) the probability that the
LDOS has a certain value on a fixed lattice site i, when
the εi vary. Note that p(ρi, ω) does not depend on i, in
contrast to ρi(ω).

One basic physical quantity that is calculated from
p(ρi, ω) is the arithmetically averaged density of states
(DOS)

ρ(ω) =

∞∫

0

ρi p(ρi, ω) dρi (3)

which counts the number of states at energy ω. For
the ordered system, when ρi(ω) does not depend on i,
p(ρi, ω) = δ(ρi − ρ(ω)) is a δ-peak at the DOS. In the
presence of disorder p(ρi, ω) attains a certain width and
provides additional information on the character of the
electronic states in the system. A narrow distribution cor-
responds to more or less homogeneous states, when elec-
tron scattering is weak, while a broad distribution reflects
strong scattering leading to very inhomogeneous states.
The essential information on the character of states at en-
ergy ω is thus provided by the distribution p(ρi, ω), which
gives a more detailed description of the disordered system
than the DOS ρ(ω) alone.

In particular we can decide whether states at ω are lo-
calized if we employ the precise definition of p(ρi, ω). The
retarded Green function Gii(ω), hence the LDOS and its
distribution, is usually calculated for a complex energy
ω + iη with a small positive imaginary part η, followed
by analytical continuation to the real axis, i.e. η → 0. A

finite η gives a Lorentzian broadening with respect to ω,
i.e. a finite energy resolution. For η → 0, the resolution in-
creases until peaks in the LDOS (corresponding to poles
of Gii(ω)) and bands (corresponding to branch cuts of
Gii(ω)) can be separated. The behaviour of the distribu-
tion in the limit η → 0 is thus different depending on the
spectral properties of the system. For a spectrum consist-
ing only of discrete peaks — this corresponds to localized
states — the distribution becomes singular for η → 0.
Contrary to this we get a regular distribution if the spec-
trum is continuous as for extended band (‘Bloch’) states.
We use this property in the study of Anderson localiza-
tion (see Appendix B), and will use it for the fragmented
spectra of the quantum percolation model.

In this article we obtain p(ρi, ω) directly through the
LD approach (for details see Appendix A). It is natural
to compare the results for ρ(ω) of the LD approach to the
corresponding CPA results. While the lattice enters the
CPA calculations only through the lattice DOS for the or-
dered system the LD approach is explicitly constructed for
a Bethe lattice1. Owing to the absence of loops the Bethe
lattice is a kind of mean-field approximation to (hyper-)
cubic lattices. Its particular geometry does not affect the
qualitative behaviour away from the localization transi-
tion, which indeed is similar to a cubic lattice in three
dimensions, see e.g. our discussion of the quantum perco-
lation model (Sect. 5) or the phase diagram obtained for
the Anderson model (Appendix B). Conversely the exis-
tence of different phases and transitions in between is cor-
rectly described by the LD approach for dimensions ≥3,
similar to the success of dynamical mean field theory for
interacting systems in high dimensions. Of course at the
phase transition, when the correlation length diverges, re-
sults for Bethe and cubic lattices differ (see Ref. [14] and
Appendix B). Weak localization in two dimensions, on the
other hand, is related to interference on closed loops and
thus not seen on a Bethe lattice.

3 Binary alloy model

The binary alloy model has a bimodal disorder distribu-
tion

p(εi) = cAδ(εi − EA) + (1 − cA)δ(εi − EB), (4)

corresponding to a crystal randomly composed of A-atoms
(B-atoms) at energy EA (EB). We set EA = −∆/2,
EB = ∆/2, i.e. ∆ = EB − EA. Different aspects of the
involved physics of the binary alloy model have been dis-
cussed previously (see e.g. Refs. [5–9]). The local electron
motion strongly depends on the configuration of atoms at
(and in the vicinity of) a certain lattice site. This ‘cluster

1 The (half-infinite) Bethe lattice is a loop-free tree with
a semicircular DOS ρ(ω) = (4/πW 2)

√
W 2 − 4ω2 [17]. If not

stated otherwise, we use a Bethe lattice with K = 2 nearest
neighbours to any lattice site. The hopping matrix element t
is chosen to give a full bandwidth W = 4t

√
K = 1, so energies

will be measured in units of W .
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effect’, showing up as peaks in the DOS, is not obtained
by the CPA. We will show that the LD approach can give
a (more) complete picture with fair ease. Especially the
DOS becomes accessible and will turn out to be impor-
tant for a thorough understanding.

3.1 Low A-concentration — small separation energy

We first study the situation of low concentration cA =
0.1 of A-atoms (which is below the classical percolation
threshold, cf. Sect. 5). The A-atoms can be considered as
the minority species in a bulk system of B-atoms (doping
a semiconductor is an example).

For small separation energy ∆ = 0.3 the energy levels
of the minority A-atoms lie inside the B-band. The DOS
mainly consists of the B-band centered at EB = +0.15,
but shows some additional structures at the lower band
edge, which are absent in the CPA DOS (cf. Fig. 1). They
originate from the strong fluctuations in the local environ-
ment of an atom, which can be clearly seen in the distri-
bution of the LDOS (cf. Fig. 1). Note the various peaks
of this distribution (in contrast to the Anderson model,
see Appendix B), and its large width displaying the pro-
nounced fluctuations of the electron’s wave-function.

To understand the consequences of different atoms sit-
uated at a lattice site we can look at the ‘conditional’
LDOS ρ

A/B
i (ω), subject to the constraint that an A- re-

spectively B-atom is located at site i. More generally we
can specify a certain configuration of atoms on a cluster
of sites centered at i. By considering larger and larger
clusters every peak in the distribution of the conditional
LDOS (and in the DOS) can be attributed to a specific
configuration (cf. Fig. 1). As the simplest example the pro-
nounced peak at ω ≈ −0.35 results from a single A-atom
surrounded by B-atoms (cf. inset Fig. 1). Its approximate
position and form follow from the simple formula

GA(ω) =

⎡

⎣ω + EB

2
− EA +

√(
ω − EB

2

)2

− W 2

16

⎤

⎦
−1

(5)
for the local Green function of one A-impurity embedded
in a B-lattice. The corresponding DOS, using a Lorentzian
broadening η = 0.02 in the energy argument ω + iη of
the Green function to mimic the effect of tunnelling be-
tween different A-atoms, fits the conditional DOS very
well (dashed curve in inset of Fig. 1). The complementary
situation of a B-atom surrounded by A-atoms contributes
to the ‘hump’ in the B-band (cf. Fig. 1), which arises from
B-atoms neighbouring to A-atoms.

It should be noted that equation (5) gives a δ-peak
outside the B-band, corresponding to the impurity state
at the A-atom, only above a critical value of ∆. This is
another evidence that the Bethe lattice should be under-
stood as an approximation to lattices in dimensions d ≥ 3.
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Fig. 1. Binary alloy with ∆ = 0.3, cA = 0.1. The upper panel
shows the DOS, obtained within the LD approach and CPA.
The inset displays the conditional DOS for the cluster config-
uration A − BB, the dashed curve has been calculated using
equation (5) with broadening η = 10−2 (see text). The lower
panel shows the distribution of the LDOS at ω = 0.6 (curve on
top). The six other curves show the distribution of the condi-
tional LDOS for a specified cluster of three sites.

3.2 Low A-concentration — split band case

Increasing the separation energy to ∆ = 2.0 (still with
cA = 0.1) leads to the split band case (see Fig. 2). The ma-
jority B-atoms still form a band whose DOS shows some
additional spikes.

Since the concentration of the minority A-atoms is
below the classical percolation threshold only finite A-
clusters exist (cf. Sect. 5). Due to the large energy separa-
tion the ‘A-states’ on these clusters are strongly damped
through scattering on B-atoms. Accordingly the ‘A-states’
do not form a band of (extended) states but a fragmented
set of peaks with varying height and width, reminiscent
of the percolation model (cf. Sect. 5). Again these peaks
emerge from A-clusters embedded in the B-lattice. The
central peak at ω = −1.031 whose position can be again
calculated with equation (5) corresponds to a single A-
atom surrounded by B-atoms. Similarly the two side-
peaks result from two adjacent A-atoms, and so forth. The
weight of these peaks decreases exponentially as cN

A for a
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Fig. 2. DOS for the binary alloy with ∆ = 2.0, cA = 0.1. To
broaden the peaks of the ‘A-states’ we add an artificial imag-
inary part η = 10−3 to the energy argument ω of the Green
function Gii(ω) in equation (2). Arrows mark the position of
three peaks each in the A- and B-band.

N -atomic cluster. The complementary configurations, re-
versing the role of A- and B-atoms, yield spikes in the
B-band. Since the concentration of B-atoms is large these
spikes do not form peaks but merge with the B-band.

Owing to the different strength of scattering we ex-
pect that all ‘A-states’ are localized, while the ‘B-band’
remains extended. In accordance with localization in the
Anderson model (Appendix B) we can extract the nature
of states from the behaviour of the distribution p(ρi, ω)
for ω shifted by a small imaginary part η. Indeed we find
that, for η → 0, the distribution is singular in the energy
range of the ‘A-states’ but regular for the B-band, which
proves that ‘A-states’ are localized and the ‘B-band’ re-
mains extended.

3.3 Phase diagram

In Figure 3 we show the phase diagram of the binary alloy
for low concentration cA = 0.1. For ∆ below a critical
value ∆c ≈ 0.5 the spectrum consists of a single band,
which splits into two bands above ∆c. The value of ∆c is a
little bit larger than obtained within CPA (∆CPA

c ≈ 0.45),
but significantly smaller than ∆ = 1, when two bands with
bandwidth W = 1 centered around ±∆/2 would no longer
overlap.

The phase diagram shows the rich physics of the bi-
nary alloy as discussed in the previous two sections: (i)
formation of many gaps, leading to a strongly fragmented
minority ‘band’; (ii) the bands between the gaps show ad-
ditional spikes; (iii) for split bands and low concentrations,
minority states are localized impurity states, while major-
ity states are extended band states. These three important
effects go beyond the CPA, which gives only the band
splitting. The CPA works reasonably well for the major-
ity band, where the local environment of a lattice site is
less important, but it cannot describe the fine structure
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∆

Fig. 3. (Colour online) Phase diagram of the binary alloy,
for low concentration cA = 0.1 (upper panel), and equal con-
centration cA = cB = 0.5 (lower panel). The solid filled curves
show the DOS for various ∆. The dashed curves show the CPA
band edges, and the dotted lines mark ω = ±∆/2 ± W/2.

of the minority band in even a crude way. These findings
are in full agreement with reference [7], and we can addi-
tionally show the exact form of the DOS which is one out-
come of the LD approach. So far we have dealt with a low
concentration cA of the A-species below the classical per-
colation threshold pc = 1/K for the Bethe lattice. Then,
when only finite A-clusters exist, strong signatures and
fragmentation of the DOS could be observed. Increasing
K with cA fixed, these signatures are partially weakened
as long as cA < pc (see Fig. 4). Above the percolation
threshold (cA > pc), infinite A-clusters exist, leading to
a band which is no longer fragmented. Nevertheless the
DOS still has peaks. For large K (equivalent to pc � cA)
the DOS approaches a semicircular form, anticipating the
CPA result in the limit K = ∞ (cf. the discussion in the
appendices).

For equal concentration cA = cB = 0.5 and K = 3,
both atom species are in the percolating regime, which
corresponds not to a doped material but to a stoichiomet-
ric compound. The phase diagram (Fig. 3) shows that the
signatures in the DOS become more pronounced with in-
creasing ∆, when the binary alloy model approaches the
percolation model (see Sect. 5).
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Fig. 4. DOS of the impurity band for ∆ = 2.0 and cA =
0.2, with increasing number of nearest neighbours K of the
Bethe lattice. For K = 2, 4, the concentration cA is below the
classical percolation threshold pc = 1/K, for K = 6, 12 above.
In contrast to Figure 2 we did not broaden the peaks with an
additional η.

4 Combined Anderson and binary alloy model

The binary alloy model shows a distinct tendency towards
peak and gap formation. This behaviour is a generic fea-
ture of systems with a bimodal disorder distribution. For
example consider the binary alloy model with additional
on-site box disorder γ, i.e.

p(εi) =
cA

γ
Θ(γ/2−|εi−EA|)+

1 − cA

γ
Θ(γ/2−|εi−EB|) .

(6)
The CPA suggests that the system is the combination of
two rescaled Anderson models. This is consistent with
its phase diagram concerning the position of mobility
edges [15]. The LD approach additionally shows that
structures similar to the ‘pure’ binary alloy appear (cf.
Fig. 5). Evidently the system is not adequately described
in terms of rescaled Anderson models. For the parameters
considered γ is on the same energy scale as the hopping
matrix element t (here t = W/

√
32, i.e. γ ≈ 0.56t). It

is thus reasonable to assume that in a real alloy, e.g. a
doped semiconductor, the peaked structure of the binary
alloy DOS can be found. Furthermore, if we extract lo-
calization properties of the system by the η → 0 limit
(cf. Appendix B), we find the A-band to be entirely local-
ized (see Fig. 5). Nevertheless γ is much smaller than the
critical disorder (γc � 3 × bandwidth) for Anderson lo-
calization of the A-subband (in agreement with Ref. [15]).
Therefore localization of the A-band is increased due to
the strong scattering occurring for the minority band in
the binary alloy. This suggests that impurity band states
in a doped semiconductor will almost always be localized.

5 Quantum percolation model

In the limit EB → ∞, now keeping EA = 0 fixed, the
binary alloy model reduces to the percolation model where
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Fig. 5. The upper panel shows the DOS for the binary alloy
(∆ = 2.0, cA = 0.1) with additional on-site disorder γ = 0.1.
(see Eq. (6)). The bottom row displays the dependence on η of
the LDOS distribution. Lower left panel: in the center of the
A-band at ω = −1 the distribution becomes singular for η → 0,
i.e. states are localized. Lower right panel: for the B-band at
ω = +1 the distribution is independent of η, and has a peaked
structure known from the binary alloy model (cf. Fig. 1).

A-sites are embedded in an impenetrable host medium2.
Certainly, in a real alloy with ∆ < ∞, the electron has the
chance to tunnel through the host barrier. Nevertheless,
the percolation model shows very general features which
have already shown up in the split band case of the binary
alloy model (see above).

Let us first study the DOS. If the concentration cA

of A-atoms is below the classical percolation threshold pc

only finite clusters exist. The corresponding spectrum is a
pure point spectrum which densely fills the energy interval
[−W/2, W/2] of the tight-binding band (‘Dirac comb’). An
N -site cluster with occurrence probability cN

A (1− cA)N+1

contributes peaks at energies spread over the full possi-
ble range. Consequently the weight of a peak varies in
contrast to the Anderson model non-monotonically with
ω. Different statistical properties of the finite clusters can
be straightforwardly calculated on the Bethe lattice. For
instance the weight

wfin =
∞∑

N=1

cN−1
A (1 − cA)N+1CN (7)

=

{
1, cA ≤ 0.5
(1 − cA)2/c2

A, cA > 0.5
(8)

of all finite clusters3 directly follows by help of the gener-
ating function for the Catalan numbers CN , which give the
number of binary trees with N sites. For concentrations
above pc (= 0.5), when wfin < 1, an infinite percolating
cluster exists. This cluster can support extended states

2 On the Bethe lattice site and bond percolation are equiva-
lent.

3 Again on a Bethe lattice with coordination number K = 2,
cf. first footnote.
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Fig. 6. (Colour online) DOS ρ(ω) for the percolation model, for various concentrations cA. Upper panel: full spectrum with
Lorentzian broadening η = 10−3. Lower left panel: central region around ω = 0 without Lorentzian broadening. Lower right
panel: region around the second peak at ω = t = 1/

√
32 ≈ 0.177 without Lorentzian broadening.

which contribute to an continuous spectrum. Since the
‘effective’ dimension of the percolating cluster is smaller
than K (especially close to pc), the bandwidth of the re-
sulting band is smaller than W .

The DOS shows strong signatures (peaks and dips),
which have already occurred in the binary alloy model
(see top pannel in Fig. 6). These signatures arise from
both isolated finite clusters and finite clusters attached
to the backbone of the infinite percolating cluster. With
increasing concentration their weight reduces, and the sig-
natures are washed out. At ω = 0 a pronounced δ-peak
surrounded by a dip in the DOS exists. With increasing
concentration the peak reduces in weight and the dip nar-
rows, eventually both merge to a spike in the band.

The origin of this central peak and the dip can be
understood on the same level of reasoning as for equa-
tion (5). If a single atom is attached to the backbone of
the percolating cluster the Green function is modified by
the additional hopping to this atom. The DOS then shows
a δ-peak at ω = 0, which is the energy of the state located
at the atom, and a dip around this peak which arises from
damping of states on the percolating cluster. The same
argumentation holds for any finite cluster instead of a sin-
gle atom. Since larger clusters have lower probability of
occurrence the central peak is the most pronounced, and
exists up to the largest concentrations.

Nevertheless the percolating cluster is not made up of
its backbone plus one additional finite cluster, but many
finite clusters attached to it. The Green function Gc(ω) of
a (half-)infinite chain with one additional atom attached
to each site obeys the recursion relation

Gc(ω) = (ω − t2/ω − t2Gc(ω))−1 (9)

which is solved by Gc(ω) = G0(ω − t2/ω), where G0(ω)
is the Green function of the Bethe lattice. Of course
Gc(ω = 0) = 0 as before, but the diverging real part of 1/ω

produces not a dip but a gap in the DOS around ω = 0.
The validity of this simple argumentation can be tested
within the LD approach since its energy resolution is not
limited by finite size effects. Without Lorentzian broad-
ening, i.e. η → 0, the δ-peaks arising from finite cluster
states do not contribute to the DOS (cf. Sect. 2), and only
the continuous spectrum from extended band states sur-
vives. This spectrum indeed shows a gap around ω = 0
for sufficiently small concentrations (cf. Fig. 6, bottom
left). Lowering the concentration, gaps open at the en-
ergies corresponding to any finite cluster eigenstate. The
first additional gaps open at ω = ±t (Fig. 6, bottom right),
corresponding to two-site clusters, which have the second
largest weight among all finite clusters. These gaps are
filled by peaks from the dense spectrum of finite cluster
states, thus are absent in the DOS for any finite energy
resolution (cf. Ref. [16]). The formation of gaps — which
is a kind of ‘level repulsion’ — is a significant quantum
feature with no counterpart in the classical model.

Besides the DOS the nature of states is important.
For concentrations cA < pc, when only finite clusters ex-
ist, all states are localized and no electron transport is
possible. For concentrations above pc a classical electron
can traverse the system along the percolating cluster. But
a quantum mechanical electron scatters off all irregulari-
ties and is possibly localized. This raises the question of a
quantum percolation threshold pq above pc.

Close to pc states on the percolating cluster have only
exponentially small weight. It is thus difficult to extract
the information about those states from the background
of finite cluster contributions. However, we can gain some
information from the distribution of the LDOS, if cA and
η are varied. Again, if we let η → 0, the energy reso-
lution increases until contributions from extended states
on the percolating cluster are separated from the discrete
peaks of localized states (see left panel of Fig. 7). For fixed
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Fig. 7. LDOS distribution for the percolation model at
ω = 0.1. Left panel: for cA = 0.7 and two values of regu-
larization η = 10−8 and η = 10−20. For η → 0 only extended
states contribute to p(ρi, ω) at finite ρi. Right panel: integrated
probability p(ρi > ξ, ω) in dependence on η, for various cA and
one particular value ξ = 10−10. For cA � 0.54 no states exist
at ω = 0.1, and p(ρi, ω) = 0.

energy ω and suitably large concentration cA the distri-
bution p(ρi, ω) has finite weight at finite ρi in the limit
η → 0 (see right panel of Fig. 7), which indicates that ex-
tended states exist. Their weight can be estimated through
the integrated probability p(ρi > ξ, ω) =

∫ ∞
ξ

p(ρi, ω) dρi,
with η < ξ. The weight decreases with cA, and abruptly
drops to zero at a certain concentration (for cA ≈ 0.54 at
ω = 0.1). Then no states exist at ω, and ρave(ω) = 0. This
behaviour has to be attributed to the fragmentation of the
spectrum discussed before. At a given energy ω a gap will
open for concentrations cA sufficiently close to pc. Before
a gap opens at ω, states are extended. After the gap has
opened, no states at ω exist. Between the gaps, which open
at different concentrations for different energies, extended
states can survive even for very small cA, although all
states are extremely damped and practically localized. A
definite localization transition from extended to localized
states does however not take place, and the only transi-
tion occurs when the spectrum is fully fragmented, that
is at the classical transition cA = pc. We conclude, on the
basis of these arguments and our numerical results, that,
for the percolation problem on the Bethe lattice, a quan-
tum percolation threshold above the classical one does not
exist. Note that scattering on the percolating cluster is of
a different type than for the Anderson model. The finite
clusters attached to the percolating backbone do not act
as coherent but incoherent scatterers. So states on the
backbone will not be localized for small cA (i.e. strong
scattering), or even immediately localized, as in one di-
mension.

6 Conclusions

In this article we demonstrated how the LD approach can
be used to study localization and percolative effects in
alloys. With very moderate computational demands this

scheme suffices to resolve the rich structures in the DOS
originating from comparably strong disorder fluctuations.
Even for the extreme limit of the binary alloy model, the
percolation model, convincing results are easily obtained.
For instance the question whether gaps form in the perco-
lation model could be definitely answered, and the possi-
bility of a quantum percolation threshold above the classi-
cal one could be almost definitely ruled out for the Bethe
lattice.

We conclude that the LD approach is a convenient
framework for investigations of disorder and localization,
and suggest its application to interacting disordered sys-
tems.

Appendix A: The LD approach

The LD approach has been constructed by Abou-Chacra
et al. [2] on a Bethe lattice. There the local Green function
Gii(ω) = 〈i|(ω + iη − H)−1|i〉 can be expressed through
Green functions on the K neighbouring lattice sites j =
1, . . . , K

Gii(ω) =
[
ω − εi − t2

K∑

j=1

Gjj(ω)
]−1

, (10)

where each Gjj(ω) on the r.h.s. of this equation is eval-
uated for the lattice with site i removed. Iterating this
expansion an infinite hierarchy of equations is generated
(‘renormalized perturbation expansion’) [17]. Instead of
solving this hierarchy for many particular realizations of
the εi and constructing the distribution of Gii(ω) after-
wards the LD approach manages to solve equation (10)
directly for the distribution. This solution relies on two
properties arising from the special geometry of the Bethe
lattice. First, all Green functions in equation (10) corre-
spond to the same geometric situation (one lattice site
with K neighbouring sites). Hence their distribution is
identical (although their concrete values differ). More-
over, removing site i from the lattice, the lattice sites
j = 1, . . . , K are unconnected, and the Gjj(ω) are in-
dependently distributed. Owing to these two properties
equation (10) expresses one random variable through K
independently distributed random variables with the same
distribution, and can therefore be interpreted as a self-
consistency equation for the distribution of Gii(ω) [2,12].
Be aware that then the indices i, j do not denote specific
lattice sites but certain realizations of the random variable
Gii(ω).

For the ordered system (εi = 0) all Green functions
in equation (10) are identical, and the Green function
G0(ω) = (8/W 2)(ω − √

ω2 − W 2/4) of the Bethe lat-
tice [17], with bandwidth W = 4t

√
K, is obtained. For

a disordered system the solution of equation (10) is ob-
tained through a Monte-Carlo procedure (Gibbs sam-
pling). The distribution is represented through a sample of
typically 104 up to 107 elements, depending on the respec-
tive case studied. At each step of iteration a new sample is
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constructed whose elements are calculated through equa-
tion (10) with a randomly chosen εi and K elements drawn
from the previous sample. A hundred up to some thou-
sand iterations are necessary to guarantee convergence.
The resulting computation time on a standard desktop
PC ranges from few minutes to some hours.

The LD approach comprises the coherent potential
approximation (CPA) in the limit of infinite coordina-
tion number K = ∞. Taking into account the scaling
t ∝ 1/

√
K of the hopping matrix element, the sum over

j in equation (10) can — assuming the central limit the-
orem to be applicable — be replaced by the arithmetic
average of Gjj , and the CPA is recovered.

In course of its construction the LD approach works
on an infinite lattice (no boundaries, no finite size effects,
no finite energy resolution). In the numerical solution the
size of the sample determines the resolution which the
distribution is sampled with. The resolution can be easily
enhanced by increasing the sample size (see below).

Appendix B: Anderson model

We describe in this appendix the application of the LD
approach to the Anderson localization problem. Although
this is not the main objective of this article, it will help
to underline the generality of the LD approach.

The Anderson model — which is the prototype model
showing a localization transition — is given by equa-
tion (1) for a uniform distribution of εi in the interval
[−γ/2, γ/2],

p(εi) =
1
γ

Θ
(γ

2
− |εi|

)
. (11)

The characteristics of localization show up in p(ρi, ω) (cf.
Fig. 8). Impurity scattering causes the distribution to be
strongly asymmetric and broad even for extended states.
As one consequence the DOS ρ(ω) is on a different scale
than ‘typical’ values of the distribution, e.g. the most
probable value. On approaching the localization transition
the asymmetry further increases. Much weight is trans-
ferred to large values of ρi, while the ‘typical’ values tends
to zero.

A closer look at the distribution reveals that near the
localization transition it shows a power law behaviour over
a wide range of ρi, with an exponent �1.45, which is rea-
sonably close to analytical results obtained from field the-
oretical considerations [14].

Passing the localization transition the distribution be-
comes singular, corresponding to a transition from con-
tinuous to discrete spectrum. This characteristic change
reflects itself most clearly in the dependence of the distri-
bution on the η-regularization, when Gii(ω) is calculated
for a complex energy argument ω+iη. While the distribu-
tion for extended states is stable when decreasing η, the
relevant scale for localized states is entirely set through
η, and the distribution becomes singular for η → 0 (see
Fig. 8). We can use this different behaviour as a localiza-
tion criterion, if we perform the η → 0 limit numerically.
This criterion does not depend on any a priori choice or
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Fig. 8. Left panel: phase diagram of the Anderson model. The
solid (dashed, dotted) curve shows the mobility edge trajectory
calculated within the LD approach (TMT, simplified TMT) by
means of the η → 0 limit, using a sample with 5×104 elements.
The crosses indicate points in the (ω, γ)-plane corresponding
to the mobility edge position for an extremely large sample of
2.5× 107 elements. Upper right panel: probability distribution
of LDOS for extended states, at γ = 1.5, ω = 0.0. The distribu-
tion is — for not too large values of η — independent of η, but
the most probable value (‘mpv’) is some orders of magnitude
smaller than the (geometric) DOS ρ(ω) (ρgeo(ω)). Lower right
panel: probability distribution p(ρi, ω) for localized states, at
γ = 1.5, ω = 0.9, and three values of η.

approximation, hence should be considered ‘numerically
exact’. As we have already mentioned (cf. Appendix A)
the finite size of the Monte-Carlo sample sets the reso-
lution for sampling p(ρi, ω). If the sample is too small
(and thus the resolution too low) an almost singular dis-
tribution will be falsely detected as singular while a larger
sample correctly gives a regular distribution correspond-
ing to extended states. Accordingly the mobility edge is
shifted to larger values of disorder on increasing the sam-
ple size (Fig. 8). However, the points on the mobility edge
trajectory readily stabilize if the sample is chosen large
enough, and a precise determination of the mobility edge
is possible.

The LD approach phase diagram for the Anderson
model which is then obtained shows the characteris-
tic features of the localization problem in three dimen-
sions [18,19]. These can be most simply understood to
arise from the interplay of two competing effects: While,
for small disorder, tunnelling between shallow impurities
produces extended states outside the tight-binding band,
strong scattering on deep impurities takes place with in-
creasing disorder, starting to localize formerly extended
states. Therefore a reentrant behaviour of the mobility
edge trajectory and the existence of a critical disorder γc

(γc ≈ 3.0 for K = 2 neighbour sites of the Bethe lattice)
for complete localization of all states is found.
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According to the mean-field type of approximation, the
critical disorder γc for the Bethe lattice is larger than for
a cubic lattice. For K → ∞, γc grows without bound, i.e.
localization is absent in K = ∞ (where the LD approach
reduces to the CPA). For K = 1 the Bethe lattice is a
one-dimensional chain, where all states are known to be
localized for arbitrary disorder. The sum in equation (10)
then contains only one Gjj(ω), which implies that the LD
sampling scheme cannot converge to a stable distribution,
since different elements of the sample never become re-
lated to each other during the sampling. This instability
expresses the particular one-dimensional localization be-
haviour.

For comparison to the LD approach we show in Fig-
ure 8 the mobility edge trajectory obtained within a
recently proposed mean-field like approach to Ander-
son localization, the so-called typical medium theory
(TMT) [20,21]. This TMT modifies the CPA by refor-
mulating its self-consistency condition in terms of the ge-
ometrically averaged DOS

ρgeo(ω) = exp

⎛

⎝
∞∫

0

(ln ρi)p(ρi, ω)dρi

⎞

⎠ . (12)

This average is known to be critical at the localization
transition, since it puts much weight at low values of ρi.
It nevertheless does not approximate the ‘typical’ values,
see Figure 8.

If we compare the lines of vanishing ρgeo(ω) from TMT
(i.e. the ‘TMT mobility edges’) with the LD approach
phase diagram we see the consequences of this modifi-
cation: (i) the critical disorder predicted is significantly
smaller; and (ii) the reentrant behaviour of the mobility
edge is entirely missed.

Remember that the CPA is obtained in the well defined
limit of infinite coordination number K = ∞, therefore
is a controlled approximation. In the TMT construction
some ambiguity enters in the choice of the average used.
In fact TMT can be further simplified, replacing ρgeo(ω)
by ρsimp = min{ρi(εi = γ/2), ρi(εi = −γ/2)}. This ‘av-
eraging procedure’ drastically overestimates the strength
of impurity scattering, and the ‘simplified TMT’ is surely
far away from any reasonable description of the underly-
ing physics. However, the phase diagram obtained is very
similar to the TMT one. Of course the critical disorder
has to be even smaller than in TMT.

Apparently TMT captures strong impurity scattering
which is partially neglected in the CPA. However, Ander-
son localization is not merely a result of strong scattering
but quantum interference due to coherent scattering. The
similarity between the TMT and ‘simplified TMT’ results
indicates that TMT might not adequately include these
interference effects.
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Lett. 62, 76 (2003).

21. K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. Lett.
94, 056404 (2005)


